Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Annals of Dermatology ; : 597-601, 2017.
Article in English | WPRIM | ID: wpr-226482

ABSTRACT

BACKGROUND: Trichorhinophalangeal syndrome (TRPS) patients tend to have alopecia that appears to be androgenetic, and this genetic model might give clues to the pathogenesis of hair loss or hair morphogenesis. OBJECTIVE: This study was conducted to identify additional genetic evidence of TRPS and hair morphogenesis from a TRPS patient. METHODS: From one TRPS type I patient, we extracted RNA and profiled whole transcriptome in non-balding and balding scalp areas using high-throughput RNA sequencing. RESULTS: We found a total of 26,320 genes, which comprised 14,892 known genes with new isoforms and 4,883 novel genes from the non-balding and balding areas. Among these, a total of 1,242 genes showed different expression in the two scalp areas (p0). Several genes related to the skin and hair, alopecia, and the TRPS1 gene were validated by qRT-PCR. Twelve of 15 genes (KRT6C, KRTAP3-1, MKI67, GPRC5D, TYRP1, DSC1, PMEL, WIF1, SOX21, TINAG, PTGDS, and TRPS1) were down-regulated (10 genes: p0.05), and the three other genes (HBA2, GAL, and DES) were up-regulated (p<0.01) in the balding scalp. Many genes related to keratin and hair development were down-regulated in the balding scalp of the TRPS type I patient. In particular, the TRPS1 gene might be related to androgen metabolism and hair morphogenesis. CONCLUSION: Our result could suggest a novel perspective and evidence to support further study of TRPS and hair morphogenesis.


Subject(s)
Humans , Alopecia , Gene Expression Profiling , Hair , High-Throughput Nucleotide Sequencing , Metabolism , Models, Genetic , Morphogenesis , Protein Isoforms , RNA , Scalp , Skin , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL